JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT 

Logo.jpg

p-ISSN (Print Version): 2724 - 699X

e-ISSN (Electronic Version):  2724-7007

Special Issue : June 2021

Comparative analysis of responses to field salinity stress in contrasting soybean accessions highlights NaCl exclusion in leaves as a key mechanism for salinity stress tolerance.

Authors: Akanbi Musa Oyebowale, Egbichi Ifeanyi Moses & Ludidi Ndiko

Abstract

Salinity is one of the main limitations to legume productivity in many regions of the world and it is estimated that 50% of all arable land will become affected by salinity by 2050. The impact of field salinity on soybean performance was assessed using two soybean accessions (KCW and HMC) cultivated in salt-treated soil and non-salt treated soil. We used a 30 cm deep field system layered with 0.4 kg/m2 NaCl for the salt-treated experiment while the control field received no salt treatment. The results show that salinity reduces soybean growth and yield as evident from the reduction in the plant shoot length, stem diameter, number of branches, number of pods and seed weight. However, the reduction in these growth parameters was less pronounced in the HMC accession than the KCW accession. Furthermore, Na+ content in leaves of the HMC accession was lower than that of the KCW accession. This proved that salinity has a damaging effect on soybean growth and yield and the relative tolerance of the HMC accession is attributed in part to its ability to restrict Na+ transport to the leaves. While the study emphasizes salt exclusion as a potentially useful mechanism for salinity tolerance in soybean, it provides evidence that the HMC accession is a good genetic resource for breeding soybean varieties with improved salinity stress tolerance.